inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Matthias Weil

Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria

Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (O–B) = 0.005 Å R factor = 0.025 wR factor = 0.056 Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

HgB₄O₇, a member of the isotypic $M^{II}B_4O_7$ family (M^{II} = Mg, Mn, Zn, Cd)

Mercury(II) tetraborate, HgB₄O₇, belongs to the family of isotypic compounds with the formula $M^{II}B_4O_7$ ($M^{II} = Mg, Mn, Zn, Cd$). The structure is composed of a framework of $[B_4O_7]^{2-}$ units, with two B atoms in triangular and two B atoms in tetrahedral coordination, and an Hg²⁺ atom situated in the cavities of the framework with a [4 + 3]-coordination by O atoms.

Comment

Up to now, three phases have been synthesized in the system $HgO-B_2O_3$, *viz.* the orthoborate $Hg_3(BO_3)_2$, the tetraborate HgB_4O_7 (Chrétien & Priou, 1970), and the metaborate $Hg_4O(BO_2)_6$, which was prepared by application of high-pressure/high-temperature conditions (Chang & Margrave, 1967). For all three compounds, polycrystalline products were obtained during synthesis, but only the structure of $Hg_3(BO_3)_2$ was refined from X-ray powder data, using the Rietveld method (Laureio *et al.*, 1991). For the other two compounds powder data were published. During a systematic investigation of the preparation and crystal chemistry of various mercury oxo compounds, a method of synthesis was established for mercury(II) borates which led to the single-crystal

Projection of the structure along [010]. The Hg atoms are shown as solid blue spheres and the O atoms as white spheres. BO_4 groups (yellow) and BO_3 groups (orange) are represented as polyhedra. For clarity, Hg-O bonds have been omitted.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved Figure 1

Received 11 February 2003 Accepted 14 February 2003 Online 21 February 2003

Figure 2

The [4+3]-coordination around the Hg atom, with displacement ellipsoids drawn at the 90% probability level. Short Hg-O bonds are given as solid lines and longer bonds as open lines.

growth of $Hg_3(BO_3)_2$ and HgB_4O_7 . Owing to the higher precision of single-crystal structure analysis, the structure of $Hg_3(BO_3)_2$ was redetermined (Weil, 2003), and the structure of HgB₄O₇ is reported here for the first time.

Tetraborates of divalent metals with the general composition MB_4O_7 crystallize in different structure types depending on the ionic radii of the corresponding metals. A rough distinction between the resulting structure types can be made for metals with an ionic radius greater and smaller than 1.10 Å [ionic radii according to Shannon (1976)]. For those metals with an ionic radius > 1.10 Å, both M = Ca (Zayakina & Brovkin, 1977) and Ba (Block & Perloff, 1965) crystallize in a unique structure type, whereas phases with M = Sr (Krogh-Moe, 1964; Perloff & Block, 1966), Eu (Machida et al., 1980) and Pb (Corker & Glazer, 1996) crystallize isotypically owing to the similar radii of the metals. For all metals with an ionic radius < 1.10 Å, including M = Mg (Bartl & Schuckmann, 1966), Mn (Abrahams et al., 1974), Zn (Martinez-Ripoll et al., 1971), Cd (Ihara & Krogh-Moe, 1966) and the title compound M = Hg, the same structure type is realised. For the sake of completeness, it should be mentioned that very recently the structure of β -ZnB₄O₇ was determined (Huppertz & Heymann, 2003); this exhibits an as yet unknown structure. This phase was prepared under extreme high-pressure/hightemperature conditions and therefore shows a different crystal chemistry compared to the other MB₄O₇ phases obtained under normal pressure.

The anionic framework structure of the title compound is composed of two crystallographically independent BO₃ triangles and two BO₄ tetrahedra, which form $[B_4O_7]^{2-}$ units by sharing common vertices. The metal atoms are situated in the cavities of this arrangement (Fig. 1).

Both BO₃ and BO₄ polyhedra show point group symmetry 1 and therefore are distorted from the ideal geometry of an equilateral triangle and a tetrahedron, respectively. The mean

B-O distances are 1.371 Å for the BO₃ groups and 1.474 Å for the BO₄ groups. These values compare very well with the mean bond lengths of $\overline{d}(B-O) = 1.370$ (19) Å calculated from 75 BO₃ triangles (Zobetz, 1982) and of $\overline{d}(B-O) =$ 1.476 (35) Å calculated from 242 tetrahedral BO_4 groups (Zobetz, 1990). The Hg atom is surrounded by four close O atoms $[\overline{d}(Hg-O)_{short} = 2.233 \text{ Å}]$ in a distorted tetrahedral arrangement. The coordination polyhedron is augmented by three remote O atoms [$\overline{d}(Hg-O)_{long} = 2.863$ Å], resulting in an overall mean Hg-O distance of 2.503 Å. Except for O2, which is the bridging atom of two BO₄ tetrahedra, all O atoms act as bridging atoms between BO3 and BO4 groups. The coordination numbers of the corresponding O atoms are 2 (O7), 3 (O1, O2, O4, O5 and O6) and 4 (O3). The twofold coordinate O atom is exclusively bonded to two B atoms [bridging angle B4-O7-B3 = $121.2 (4)^{\circ}$]. Each of the threefold coordinate O atoms is surrounded by two B and one Hg atom in a distorted trigonal environment, and the fourfold coordinate O atom shows interactions with two B and two Hg atoms, resulting in a distorted tetrahedron as the corresponding coordination polyhedron.

Experimental

а

cV

Stoichiometric amounts of B2O3 (Merck, p. A.) and HgO (Merck, p. A.) were heated in a sealed and evacuated silica tube at 723 K for 2 d, yielding a colourless to light-yellow polycrystalline mixture and some additional droplets of elemental mercury. Application of a temperature gradient $773 \rightarrow 723$ K for 2 d led to the formation of colourless single crystals with a parallelepiped-like habit and an edgelength of up to 3 mm at the colder zone of the tube.

Crystal data	
HgB ₄ O ₇ $M_r = 355.83$ Orthorhombic, <i>Pbca</i> a = 8.3994 (13) Å b = 8.8066 (6) Å c = 14.1370 (17) Å V = 1045.7 (2) Å ³ Z = 8 $D_x = 4.520$ Mg m ⁻³	Mo $K\alpha$ radiation Cell parameters from reflections $\theta = 12.7-18.8^{\circ}$ $\mu = 29.42 \text{ mm}^{-1}$ T = 293 (2) K Parallelepiped, colour 0.27 × 0.20 × 0.11 mm
Data collection	
Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: numerical [the crystal shape was optimized by minimizing the R_{int} value of selected ψ -scanned reflections (<i>HABITUS</i> ; Herrendorf, 1993– 1997)] $T_{min} = 0.020, T_{max} = 0.177$ 11114 measured reflections	1516 independent refi 1298 reflections with $R_{int} = 0.072$ $\theta_{max} = 30.0^{\circ}$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -19 \rightarrow 19$ 3 standard reflections frequency: 500 min intensity decay: not
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.056$ S = 1.06	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.03) + 1.2615P]$ where $P = (F_{o}^{2} + 2)(\Delta/\sigma)_{max} < 0.001$

S 1516 reflections 110 parameters

25 rless m

lections $I > 2\sigma(I)$ ne

 $326P)^2$ $(F_c^2)/3$ $\Delta \rho_{\rm max} = 2.70 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -2.92 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.0125 (3)

Та	bl	e	1
----	----	---	---

Selected	geometric	parameters	(Å,	°).	
----------	-----------	------------	-----	-----	--

Hg-O2	2.225 (3)	B2-O1 ^{iv}	1.347 (5)
Hg-O5 ⁱ	2.230 (3)	B2-O4	1.379 (5)
Hg-O6 ⁱⁱ	2.237 (3)	B2-O5	1.393 (5)
Hg-O4 ⁱⁱⁱ	2.240 (3)	B3-O1 ⁱⁱⁱ	1.435 (5)
Hg-O3 ⁱⁱⁱ	2.793 (3)	B3-O7	1.447 (6)
Hg-O3 ⁱⁱ	2.808 (3)	B3-O2	1.499 (5)
Hg-O1	2.989 (3)	B3-O5	1.533 (5)
B1-O3	1.435 (5)	B4-O7	1.347 (5)
B1-O2	1.449 (5)	$B4-O3^{v}$	1.363 (6)
B1-O6	1.477 (5)	B4-O6	1.395 (5)
B1-O4	1.515 (6)		
O3-B1-O2	120.0 (4)	O1 ⁱⁱⁱ -B3-O7	111.9 (4)
O3-B1-O6	106.1 (3)	$O1^{iii}$ -B3-O2	108.8 (3)
O2-B1-O6	108.7 (3)	O7-B3-O2	110.4 (3)
O3-B1-O4	105.3 (3)	$O1^{iii}$ -B3-O5	111.7 (3)
O2-B1-O4	107.9 (3)	O7-B3-O5	107.7 (3)
O6-B1-O4	108.3 (3)	O2-B3-O5	106.2 (3)
$O1^{iv}-B2-O4$	124.6 (4)	$O7 - B4 - O3^{v}$	121.1 (4)
$O1^{iv}-B2-O5$	117.9 (4)	O7-B4-O6	119.6 (4)
O4-B2-O5	117.5 (4)	O3 ^v -B4-O6	119.3 (4)

Symmetry codes: (i) $x - \frac{1}{2}, y, \frac{1}{2} - z$; (ii) $x - \frac{1}{2}, \frac{1}{2} - y, -z$; (iii) $\frac{1}{2} - x, y - \frac{1}{2}, z$; (iv) $\frac{1}{2} + x, y, \frac{1}{2} - z$; (v) $\frac{1}{2} + x, \frac{1}{2} - y, -z$.

The crystal structure was refined with the atomic coordinates of the isotypic cadmium compound CdB_4O_7 (Ihara & Krogh-Moe, 1966) as starting parameters. The highest difference peak is located at a distance of 0.74 Å from Hg and the deepest hole 0.72 Å from the same atom.

Data collection: *CAD-4 Software* (Enraf-Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *HELENA* implemented in *PLATON* (Spek, 2002); program(s) used to refine struc-

ture: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ATOMS* (Dowty, 2000); software used to prepare material for publication: *SHELXL*97.

References

- Abrahams, S. C., Bernstein, J. L., Gibart, P. & Sherwood, R. C. (1974). J. Chem. Phys. 60, 1899–1905.
- Bartl, H. & Schuckmann, W. (1966). Neues Jahrb. Mineral. Monatsh. pp. 142– 148.
- Block, S. & Perloff, A. (1965). Acta Cryst. 19, 297-300.
- Chang, C. H. & Margrave, J. L. (1967). Inorg. Chim. Acta, 1, 378–380.
- Chrétien, A. & Priou, R. (1970). C. R. Acad. Sci. Paris Ser. C, 271, 1310–1312.
- Corker, D. L. & Glazer, A. M. (1996). Acta Cryst. B52, 260–265. Dowty, E. (2000). ATOMS for Windows. Version 5.1. Shape Software, 521
- Hidden Valley Road, Kingsport, TN 37663, USA. Enraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
- Herrendorf, W. (1993–97). *HABITUS*. Universities of Karlsruhe & Gießen, Germany.
- Huppertz, H. & Heymann, G. (2003). Solid State Sci. 5. In the press.
- Ihara, M. & Krogh-Moe, J. (1966). Acta Cryst. 20, 132–134.
- Krogh-Moe, J. (1964). Acta Chem. Scand. 18, 2055-2060.
- Laureio, Y., Veiga, M. L., Isasi, J., Ramos, E., Jerez, A. & Pico, C. (1991). J. Mater. Sci. Lett. 10, 635–637.
- Machida, K. I., Adachi, G. Y. & Shiokawa, J. (1980). Acta Cryst. B36, 2008– 2011.
- Martinez-Ripoll, M., Martinez-Carrera, S. & Garcia-Blanco, S. (1971). Acta Cryst. B27, 672–677.
- Perloff, A. & Block, S. (1966). Acta Cryst. 20, 274-279.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2002). PLATON. Utrecht University, The Netherlands.
- Weil, M. (2003). Z. Kristallogr. New Cryst. Struct. Submitted.
- Zayakina, N. V. & Brovkin, A. A. (1977). Kristallografiya, 22, 275-280.
- Zobetz, E. (1982). Z. Kristallogr. 160, 81-92.
- Zobetz, E. (1990). Z. Kristallogr. 191, 45-57.