Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Matthias Weil

Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria

Correspondence e-mail:
mweil@mail.zserv.tuwien.ac.at

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{O}-\mathrm{B})=0.005 \AA$
R factor $=0.025$
$w R$ factor $=0.056$
Data-to-parameter ratio $=13.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

$\mathrm{HgB}_{4} \mathrm{O}_{7}$, a member of the isotypic $M^{\prime \prime} \mathrm{B}_{4} \mathrm{O}_{7}$ family ($M^{\mathrm{II}}=\mathbf{M g}, \mathrm{Mn}, \mathrm{Zn}, \mathrm{Cd}$)

Mercury(II) tetraborate, $\mathrm{HgB}_{4} \mathrm{O}_{7}$, belongs to the family of isotypic compounds with the formula $M^{\mathrm{II}} \mathrm{B}_{4} \mathrm{O}_{7}$ ($M^{\mathrm{II}}=\mathrm{Mg}, \mathrm{Mn}$, $\mathrm{Zn}, \mathrm{Cd})$. The structure is composed of a framework of $\left[\mathrm{B}_{4} \mathrm{O}_{7}\right]^{2-}$ units, with two B atoms in triangular and two B atoms in tetrahedral coordination, and an Hg^{2+} atom situated in the cavities of the framework with a [4 +3]-coordination by O atoms.

Comment

Up to now, three phases have been synthesized in the system $\mathrm{HgO}-\mathrm{B}_{2} \mathrm{O}_{3}$, viz. the orthoborate $\mathrm{Hg}_{3}\left(\mathrm{BO}_{3}\right)_{2}$, the tetraborate $\mathrm{HgB}_{4} \mathrm{O}_{7}$ (Chrétien \& Priou, 1970), and the metaborate $\mathrm{Hg}_{4} \mathrm{O}\left(\mathrm{BO}_{2}\right)_{6}$, which was prepared by application of high-pressure/high-temperature conditions (Chang \& Margrave, 1967). For all three compounds, polycrystalline products were obtained during synthesis, but only the structure of $\mathrm{Hg}_{3}\left(\mathrm{BO}_{3}\right)_{2}$ was refined from X-ray powder data, using the Rietveld method (Laureio et al., 1991). For the other two compounds powder data were published. During a systematic investigation of the preparation and crystal chemistry of various mercury oxo compounds, a method of synthesis was established for mercury(II) borates which led to the single-crystal

Figure 1

Projection of the structure along [010]. The Hg atoms are shown as solid blue spheres and the O atoms as white spheres. BO_{4} groups (yellow) and BO_{3} groups (orange) are represented as polyhedra. For clarity, $\mathrm{Hg}-\mathrm{O}$ bonds have been omitted.

Received 11 February 2003
Accepted 14 February 2003 Online 21 February 2003

Figure 2
The $[4+3]$-coordination around the Hg atom, with displacement ellipsoids drawn at the 90% probability level. Short $\mathrm{Hg}-\mathrm{O}$ bonds are given as solid lines and longer bonds as open lines.
growth of $\mathrm{Hg}_{3}\left(\mathrm{BO}_{3}\right)_{2}$ and $\mathrm{HgB}_{4} \mathrm{O}_{7}$. Owing to the higher precision of single-crystal structure analysis, the structure of $\mathrm{Hg}_{3}\left(\mathrm{BO}_{3}\right)_{2}$ was redetermined (Weil, 2003), and the structure of $\mathrm{HgB}_{4} \mathrm{O}_{7}$ is reported here for the first time.

Tetraborates of divalent metals with the general composition $\mathrm{MB}_{4} \mathrm{O}_{7}$ crystallize in different structure types depending on the ionic radii of the corresponding metals. A rough distinction between the resulting structure types can be made for metals with an ionic radius greater and smaller than $1.10 \AA$ [ionic radii according to Shannon (1976)]. For those metals with an ionic radius $>1.10 \AA$, both $M=\mathrm{Ca}$ (Zayakina \& Brovkin, 1977) and Ba (Block \& Perloff, 1965) crystallize in a unique structure type, whereas phases with $M=\mathrm{Sr}$ (KroghMoe, 1964; Perloff \& Block, 1966), Eu (Machida et al., 1980) and Pb (Corker \& Glazer, 1996) crystallize isotypically owing to the similar radii of the metals. For all metals with an ionic radius $<1.10 \AA$, including $M=\mathrm{Mg}$ (Bartl \& Schuckmann, 1966), Mn (Abrahams et al., 1974), Zn (Martinez-Ripoll et al., 1971), Cd (Ihara \& Krogh-Moe, 1966) and the title compound $M=\mathrm{Hg}$, the same structure type is realised. For the sake of completeness, it should be mentioned that very recently the structure of $\beta-\mathrm{ZnB}_{4} \mathrm{O}_{7}$ was determined (Huppertz \& Heymann, 2003); this exhibits an as yet unknown structure. This phase was prepared under extreme high-pressure/hightemperature conditions and therefore shows a different crystal chemistry compared to the other $M \mathrm{~B}_{4} \mathrm{O}_{7}$ phases obtained under normal pressure.

The anionic framework structure of the title compound is composed of two crystallographically independent BO_{3} triangles and two BO_{4} tetrahedra, which form $\left[\mathrm{B}_{4} \mathrm{O}_{7}\right]^{2-}$ units by sharing common vertices. The metal atoms are situated in the cavities of this arrangement (Fig. 1).

Both BO_{3} and BO_{4} polyhedra show point group symmetry 1 and therefore are distorted from the ideal geometry of an equilateral triangle and a tetrahedron, respectively. The mean
$\mathrm{B}-\mathrm{O}$ distances are $1.371 \AA$ for the BO_{3} groups and $1.474 \AA$ for the BO_{4} groups. These values compare very well with the mean bond lengths of $\bar{d}(\mathrm{~B}-\mathrm{O})=1.370$ (19) \AA calculated from $75 \mathrm{BO}_{3}$ triangles (Zobetz, 1982) and of $\bar{d}(\mathrm{~B}-\mathrm{O})=$ 1.476 (35) \AA calculated from 242 tetrahedral BO_{4} groups (Zobetz, 1990). The Hg atom is surrounded by four close O atoms $\left[\bar{d}(\mathrm{Hg}-\mathrm{O})_{\text {short }}=2.233 \AA\right]$ in a distorted tetrahedral arrangement. The coordination polyhedron is augmented by three remote O atoms $\left[\bar{d}(\mathrm{Hg}-\mathrm{O})_{\text {long }}=2.863 \AA\right]$, resulting in an overall mean $\mathrm{Hg}-\mathrm{O}$ distance of $2.503 \AA$. Except for O 2 , which is the bridging atom of two BO_{4} tetrahedra, all O atoms act as bridging atoms between BO_{3} and BO_{4} groups. The coordination numbers of the corresponding O atoms are 2 (O7), 3 (O1, O2, O4, O5 and O6) and 4 (O3). The twofold coordinate O atom is exclusively bonded to two B atoms [bridging angle $\mathrm{B} 4-\mathrm{O} 7-\mathrm{B} 3=121.2(4)^{\circ}$]. Each of the threefold coordinate O atoms is surrounded by two B and one Hg atom in a distorted trigonal environment, and the fourfold coordinate O atom shows interactions with two B and two Hg atoms, resulting in a distorted tetrahedron as the corresponding coordination polyhedron.

Experimental

Stoichiometric amounts of $\mathrm{B}_{2} \mathrm{O}_{3}$ (Merck, p. A.) and HgO (Merck, p. A.) were heated in a sealed and evacuated silica tube at 723 K for 2 d , yielding a colourless to light-yellow polycrystalline mixture and some additional droplets of elemental mercury. Application of a temperature gradient $773 \rightarrow 723 \mathrm{~K}$ for 2 d led to the formation of colourless single crystals with a parallelepiped-like habit and an edgelength of up to 3 mm at the colder zone of the tube.

Crystal data

$\mathrm{HgB}_{4} \mathrm{O}_{7}$
$M_{r}=355.83$
Orthorhombic, $P b c a$
$a=8.3994$ (13) £
$b=8.8066$ (6) \AA
$c=14.1370(17) \AA$
$V=1045.7(2) \AA^{3}$
$Z=8$
$D_{x}=4.520 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: numerical
[the crystal shape was optimized by minimizing the $R_{\text {int }}$ value of selected ψ-scanned reflections (HABITUS; Herrendorf, 19931997)]
$T_{\min }=0.020, T_{\max }=0.177$
11114 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.056$
$S=1.06$
1516 reflections
110 parameters

Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=12.7-18.8^{\circ}$
$\mu=29.42 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Parallelepiped, colourless
$0.27 \times 0.20 \times 0.11 \mathrm{~mm}$

1516 independent reflections 1298 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.072$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-11 \rightarrow 11$
$k=-12 \rightarrow 12$
$l=-19 \rightarrow 19$
3 standard reflections frequency: 500 min intensity decay: none

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0326 P)^{2}\right. \\
& +1.2615 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}<0.001 \\
& \Delta \rho_{\text {max }}=2.70 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-2.92 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0125 \text { (3) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Hg}-\mathrm{O} 2$	2.225 (3)	$\mathrm{B} 2-\mathrm{O} 1^{\text {iv }}$	1.347 (5)
$\mathrm{Hg}-\mathrm{O}^{\text {i }}$	2.230 (3)	B2-O4	1.379 (5)
$\mathrm{Hg}-\mathrm{Of}^{\text {ii }}$	2.237 (3)	B2-O5	1.393 (5)
$\mathrm{Hg}-\mathrm{O}^{\text {iii }}$	2.240 (3)	$\mathrm{B} 3-\mathrm{O} 1^{\text {iii }}$	1.435 (5)
$\mathrm{Hg}-\mathrm{O}^{\text {iii }}$	2.793 (3)	B3-O7	1.447 (6)
$\mathrm{Hg}-\mathrm{O}^{\text {ii }}$	2.808 (3)	B3-O2	1.499 (5)
$\mathrm{Hg}-\mathrm{O} 1$	2.989 (3)	B3-O5	1.533 (5)
B1-O3	1.435 (5)	B4-O7	1.347 (5)
B1-O2	1.449 (5)	$\mathrm{B} 4-\mathrm{O3}^{\text {v }}$	1.363 (6)
B1-O6	1.477 (5)	B4-O6	1.395 (5)
B1-O4	1.515 (6)		
$\mathrm{O} 3-\mathrm{B} 1-\mathrm{O} 2$	120.0 (4)	$\mathrm{O}{ }^{\text {iiii }}-\mathrm{B} 3-\mathrm{O} 7$	111.9 (4)
O3-B1-O6	106.1 (3)	$\mathrm{O}{ }^{\text {iiii }}-\mathrm{B} 3-\mathrm{O} 2$	108.8 (3)
O2-B1-O6	108.7 (3)	$\mathrm{O} 7-\mathrm{B} 3-\mathrm{O} 2$	110.4 (3)
$\mathrm{O} 3-\mathrm{B} 1-\mathrm{O} 4$	105.3 (3)	$\mathrm{O}{ }^{\text {iii }}-\mathrm{B} 3-\mathrm{O} 5$	111.7 (3)
$\mathrm{O} 2-\mathrm{B} 1-\mathrm{O} 4$	107.9 (3)	O7-B3-O5	107.7 (3)
O6-B1-O4	108.3 (3)	$\mathrm{O} 2-\mathrm{B} 3-\mathrm{O} 5$	106.2 (3)
$\mathrm{O} 1^{\text {iv }}-\mathrm{B} 2-\mathrm{O} 4$	124.6 (4)	$\mathrm{O} 7-\mathrm{B} 4-\mathrm{O} 3^{\text {v }}$	121.1 (4)
$\mathrm{O} 1^{\text {iv }}-\mathrm{B} 2-\mathrm{O} 5$	117.9 (4)	O7-B4-O6	119.6 (4)
O4-B2-O5	117.5 (4)	$\mathrm{O}^{\mathrm{v}}-\mathrm{B} 4-\mathrm{O} 6$	119.3 (4)

The crystal structure was refined with the atomic coordinates of the isotypic cadmium compound $\mathrm{CdB}_{4} \mathrm{O}_{7}$ (Ihara \& Krogh-Moe, 1966) as starting parameters. The highest difference peak is located at a distance of $0.74 \AA$ from Hg and the deepest hole $0.72 \AA$ from the same atom.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: HELENA implemented in PLATON (Spek, 2002); program(s) used to refine struc-
ture: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: SHELXL97.

References

Abrahams, S. C., Bernstein, J. L., Gibart, P. \& Sherwood, R. C. (1974). J. Chem. Phys. 60, 1899-1905.
Bartl, H. \& Schuckmann, W. (1966). Neues Jahrb. Mineral. Monatsh. pp. 142148.

Block, S. \& Perloff, A. (1965). Acta Cryst. 19, 297-300.
Chang, C. H. \& Margrave, J. L. (1967). Inorg. Chim. Acta, 1, 378-380.
Chrétien, A. \& Priou, R. (1970). C. R. Acad. Sci. Paris Ser. C, 271, 1310-1312.
Corker, D. L. \& Glazer, A. M. (1996). Acta Cryst. B52, 260-265.
Dowty, E. (2000). ATOMS for Windows. Version 5.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Herrendorf, W. (1993-97). HABITUS. Universities of Karlsruhe \& Gießen, Germany.
Huppertz, H. \& Heymann, G. (2003). Solid State Sci. 5. In the press.
Ihara, M. \& Krogh-Moe, J. (1966). Acta Cryst. 20, 132-134.
Krogh-Moe, J. (1964). Acta Chem. Scand. 18, 2055-2060.
Laureio, Y., Veiga, M. L., Isasi, J., Ramos, E., Jerez, A. \& Pico, C. (1991). J. Mater. Sci. Lett. 10, 635-637.
Machida, K. I., Adachi, G. Y. \& Shiokawa, J. (1980). Acta Cryst. B36, 20082011.

Martinez-Ripoll, M., Martinez-Carrera, S. \& Garcia-Blanco, S. (1971). Acta Cryst. B27, 672-677.
Perloff, A. \& Block, S. (1966). Acta Cryst. 20, 274-279.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2002). PLATON. Utrecht University, The Netherlands.
Weil, M. (2003). Z. Kristallogr. New Cryst. Struct. Submitted.
Zayakina, N. V. \& Brovkin, A. A. (1977). Kristallografiya, 22, 275-280.
Zobetz, E. (1982). Z. Kristallogr. 160, 81-92.
Zobetz, E. (1990). Z. Kristallogr. 191, 45-57.

